Explorez la micromorphologie du pollen - Applications du microscope électronique à balayage (MEB)
Dans la recherche scientifique, le pollen a un large éventail d’applications. Selon le Dr Limi Mao, de l'Institut de géologie et de paléontologie de Nanjing, Académie chinoise des sciences, en extrayant et en analysant différents pollens déposés dans le sol, il est possible de comprendre de quelles plantes mères ils proviennent respectivement, et ainsi d'en déduire l'environnement et le climat. à ce moment-là. Dans le domaine de la recherche botanique, le pollen fournit principalement des preuves microscopiques de référence pour une taxonomie systématique. Plus intéressant encore, les preuves liées au pollen peuvent également être appliquées dans le cadre d’enquêtes criminelles. La palynologie médico-légale peut corroborer efficacement les faits d'un crime en utilisant des preuves du spectre pollinique sur les vêtements d'accompagnement du suspect et sur les lieux du crime. Dans le domaine de la recherche géologique, le pollen a été largement utilisé pour reconstituer l’histoire de la végétation, l’écologie passée et les études sur le changement climatique. Dans les études archéologiques explorant les premières civilisations et habitats agricoles humains, le pollen peut aider les scientifiques à comprendre l’histoire de la domestication humaine précoce des plantes, quelles cultures vivrières étaient cultivées, etc.
Fig. 1 Photo du modèle de pollen 3D (prise par le Dr Limi Mao, produit développé par le Dr Oliver Wilson)
La taille du pollen varie de quelques microns à plus de deux cents microns, ce qui dépasse la résolution de l'observation visuelle et nécessite l'utilisation d'un microscope pour l'observation et l'étude. Le pollen se présente sous une grande variété de morphologies, notamment des variations de taille, de forme, de structure des murs et d'ornementation. L’ornementation du pollen est l’une des bases clés pour identifier et distinguer le pollen. Cependant, la résolution du microscope optique biologique présente des limites physiques, il est difficile d'observer avec précision les différences entre les différentes ornementations du pollen, et même l'ornementation de certains petits pollens ne peut pas être observée. Par conséquent, les scientifiques doivent utiliser un microscope électronique à balayage (MEB) à haute résolution et avec une grande profondeur de champ pour obtenir une image claire des caractéristiques morphologiques du pollen. Dans l'étude du pollen fossile, il est possible d'identifier les plantes spécifiques auxquelles appartient le pollen, afin de comprendre plus précisément la végétation, l'environnement et les informations climatiques de l'époque.
La microstructure du pollen
Récemment, des chercheurs ont utilisé le filament de tungstène CIQTEK SEM3100 et le CIQTEK Field Emission SEM5000 pour observer au microscope une variété de pollen .
Fig. 2 Filament de tungstène CIQTEK SEM3100 et émission de champ SEM5000
1. Fleur de cerisier
Grains de pollen sphériques-oblongs. Doté de trois rainures de pores (sans pollen traité, les pores ne sont pas visibles), les rainures atteignent les deux pôles. Mur extérieur à ornementation striée.
2. Cresson violet de Chine (Orychophragmus violaceus)
La morphologie du pollen du cresson violet de Chine est ellipsoïdale, avec 3 rainures, la surface présente un motif réticulé et la taille des mailles varie.
3. Ottelia
Les grains de pollen sont arrondis et présentent des saillies en forme d'épines à la surface.
4. Lys
Les grains de pollen sont de forme ellipsoïdale, ellipsoïdale en vue polaire et en forme de bateau en vue équatoriale. Il s'agit principalement de grains de pollen à rainure unique, les rainures s'étendent jusqu'aux deux extrémités et la paroi extérieure comporte de courtes tiges disposées en une sculpture en forme de filet.
5. Gomme de Formose
Les grains de pollen sont sphériques, poreux, avec des membranes poreuses.
6. Jasmin d’hiver
Les grains de pollen sont ovales et longs, avec 3 rainures de pores (parfois les pores sont discrètement échancrés) et les rainures sont aussi longues que les deux pôles. La surface du mur extérieur présente une sculpture réticulée claire, la taille des mailles varie et est de forme irrégulière.
7. Buisson de papier
Les grains de pollen sont sphériques, avec des saillies granulaires sur la paroi externe, de 10 à 40 μm de diamètre.
8. Fleur de prunier
Le pollen est de forme oblongue, avec des parois extérieures rayées.
REMERCIEMENT SPÉCIAL
Quelques échantillons de pollen et photos de plantes fournis par le Dr Limi Mao, Institut de géologie et de paléontologie de Nanjing, Académie chinoise des sciences, Chine.
CIQTEK SEM5000 est un microscope électronique à balayage à émission de champ doté d'une capacité d'imagerie et d'analyse haute résolution, soutenu par de nombreuses fonctions, bénéficiant d'une conception avancée de colonne d'optique électronique, avec une technologie de tunnel de faisceau d'électrons à haute pression (SuperTunnel), une faible aberration et une non-immersion. lentille d'objectif, permet d'obtenir une imagerie haute résolution basse tension, l'échantillon magnétique peut également être analysé. Grâce à la navigation optique, aux fonctionnalités automatisées, à l'interface utilisateur d'interaction homme-machine soigneusement conçue et au processus de fonctionnement et d'utilisation optimisé, que vous soyez un expert ou non, vous pouvez rapidement démarrer et terminer un travail d'imagerie et d'analyse haute résolution.
Apprendre encore plusCIQTEK SEM5000 est un microscope électronique à balayage à émission de champ doté d'une capacité d'imagerie et d'analyse haute résolution, soutenu par de nombreuses fonctions, bénéficiant d'une conception avancée de colonne d'optique électronique, avec une technologie de tunnel de faisceau d'électrons à haute pression (SuperTunnel), une faible aberration et une non-immersion. lentille d'objectif, permet d'obtenir une imagerie haute résolution basse tension, l'échantillon magnétique peut également être analysé. Grâce à la navigation optique, aux fonctionnalités automatisées, à l'interface utilisateur d'interaction homme-machine soigneusement conçue et au processus de fonctionnement et d'utilisation optimisé, que vous soyez un expert ou non, vous pouvez rapidement démarrer et terminer un travail d'imagerie et d'analyse haute résolution.
Apprendre encore plusStable, polyvalent, flexible et efficace Le CIQTEK SEM4000X est un microscope électronique à balayage à émission de champ (FE-SEM) stable, polyvalent, flexible et efficace. Il atteint une résolution de 1,9 nm à 1,0 kV et relève facilement les défis d'imagerie haute résolution pour différents types d'échantillons. Il peut être mis à niveau avec un mode de décélération ultra-faisceau pour améliorer encore davantage la résolution basse tension. Le microscope utilise une technologie multi-détecteurs, avec un détecteur d'électrons (UD) dans la colonne capable de détecter les signaux SE et BSE tout en offrant des performances haute résolution. Le détecteur d'électrons (LD) monté sur chambre intègre un scintillateur à cristal et des tubes photomultiplicateurs, offrant une sensibilité et une efficacité plus élevées, résultant en des images stéréoscopiques d'excellente qualité. L'interface utilisateur graphique est conviviale et comprend des fonctions d'automatisation telles que la luminosité et le contraste automatiques, la mise au point automatique, le stigmateur automatique et l'alignement automatique, permettant une capture rapide d'images ultra haute résolution.
Apprendre encore plusStable, polyvalent, flexible et efficace Le CIQTEK SEM4000X est un microscope électronique à balayage à émission de champ (FE-SEM) stable, polyvalent, flexible et efficace. Il atteint une résolution de 1,9 nm à 1,0 kV et relève facilement les défis d'imagerie haute résolution pour différents types d'échantillons. Il peut être mis à niveau avec un mode de décélération ultra-faisceau pour améliorer encore davantage la résolution basse tension. Le microscope utilise une technologie multi-détecteurs, avec un détecteur d'électrons (UD) dans la colonne capable de détecter les signaux SE et BSE tout en offrant des performances haute résolution. Le détecteur d'électrons (LD) monté sur chambre intègre un scintillateur à cristal et des tubes photomultiplicateurs, offrant une sensibilité et une efficacité plus élevées, résultant en des images stéréoscopiques d'excellente qualité. L'interface utilisateur graphique est conviviale et comprend des fonctions d'automatisation telles que la luminosité et le contraste automatiques, la mise au point automatique, le stigmateur automatique et l'alignement automatique, permettant une capture rapide d'images ultra haute résolution.
Apprendre encore plusMicroscope SEM à filament de tungstène universel et hautes performances Le microscope SEM CIQTEK SEM3200 est un excellent microscope électronique à balayage à filament de tungstène (MEB) à usage général doté de capacités globales exceptionnelles. Sa structure unique de canon électronique à double anode garantit une haute résolution et améliore le rapport signal/bruit de l'image à de faibles tensions d'excitation. De plus, il offre une large gamme d'accessoires en option, faisant du SEM3200 un instrument d'analyse polyvalent doté d'excellentes possibilités d'utilisation.
Apprendre encore plusMicroscope électronique à balayage à émission de champ analytique (FESEM) avec grand faisceau I CIQTEK SEM4000Pro est un modèle analytique de FE-SEM, équipé d'un canon à électrons à émission de champ Schottky à haute luminosité et longue durée de vie. La conception de la lentille électromagnétique à 3 étages offre des avantages significatifs dans les applications analytiques telles que EDS/EDX, EBSD, WDS, etc. Il est livré en standard avec un mode faible vide et un détecteur d'électrons secondaires à faible vide haute performance, ainsi qu'un détecteur d'électrons rétrodiffusés rétractable, qui profite à l'observation d'échantillons peu conducteurs ou non conducteurs.
Apprendre encore plusLa microscopie électronique à balayage par émission de champ à ultra haute résolution (FESEM) reprend les limites Le CIQTEK SEM5000X est un FESEM ultra haute résolution avec une conception de colonne d'optique électronique optimisée, réduisant les aberrations globales de 30 %, atteignant une ultra haute résolution de 0,6 nm à 15 kV et 1,0 nm à 1 kV. . Sa haute résolution et sa stabilité le rendent avantageux dans la recherche avancée sur les matériaux nanostructuraux, ainsi que dans le développement et la fabrication de puces IC à semi-conducteurs à nœuds de haute technologie.
Apprendre encore plusHaute résolution sous faible excitation Le CIQTEK SEM5000Pro est un microscope électronique à balayage à émission de champ Schottky (FE-SEM) spécialisé en haute résolution, même sous une faible tension d'excitation. L'utilisation d'une technologie avancée d'optique électronique « Super-Tunnel » facilite un trajet de faisceau sans croisement avec une conception de lentille composée électrostatique-électromagnétique. Ces avancées réduisent l'effet de charge spatiale, minimisent les aberrations de l'objectif, améliorent la résolution d'imagerie à basse tension et atteignent une résolution de 1,2 nm à 1 kV, ce qui permet l'observation directe d'échantillons non conducteurs ou semi-conducteurs, réduisant ainsi efficacement l'échantillon. dommages causés par l'irradiation.
Apprendre encore plusMicroscope électronique à balayage à grande vitesse pour l'imagerie à grande échelle de échantillons de grand volume CIQTEK HEM6000 intègre des technologies telles que le canon à électrons à courant large et à haute luminosité, le système de déviation du faisceau d'électrons à grande vitesse, la décélération de l'étage d'échantillonnage à haute tension, l'axe optique dynamique et l'objectif combiné électromagnétique et électrostatique à immersion. pour obtenir une acquisition d'images à grande vitesse tout en garantissant une résolution à l'échelle nanométrique. Le processus de fonctionnement automatisé est conçu pour des applications telles qu'un flux de travail d'imagerie haute résolution sur de grandes surfaces plus efficace et plus intelligent. La vitesse d'imagerie peut atteindre plus de 5 fois celle d'un microscope électronique à balayage à émission de champ classique (FESEM).
Apprendre encore plusMicroscope électronique à balayage à émission de champ (FE-SEM) avec colonnes à faisceau d'ions focalisé (FIB) Le microscope électronique à balayage à faisceau d'ions focalisé CIQTEK DB550 (FIB-SEM) dispose d'une colonne de faisceau d'ions focalisé pour la nano-analyse et la préparation d'échantillons. Il utilise la technologie d'optique électronique « super tunnel », une faible aberration et une conception d'objectif non magnétique, et possède la fonction « basse tension, haute résolution » pour garantir ses capacités analytiques à l'échelle nanométrique. Les colonnes d'ions facilitent une source d'ions de métal liquide Ga+ avec des faisceaux d'ions très stables et de haute qualité pour garantir les capacités de nanofabrication. Le DB550 est une station de travail de nano-analyse et de fabrication tout-en-un avec un nano-manipulateur intégré, un système d'injection de gaz et un logiciel GUI convivial.
Apprendre encore plusMicroscope électronique à balayage à filament de tungstène de nouvelle génération Le CIQTEK SEM3300 microscope électronique à balayage (SEM) intègre des technologies telles que l'optique électronique « Super-Tunnel », des détecteurs d'électrons intégrés et un objectif composé électrostatique et électromagnétique. En appliquant ces technologies au microscope à filament de tungstène, la limite de résolution de longue date d'un tel SEM est dépassée, permettant au SEM à filament de tungstène d'effectuer des tâches d'analyse à basse tension auparavant uniquement réalisables avec des SEM à émission de champ.
Apprendre encore plusMicroscope électronique à transmission (TEM) à émission de champ 120 kV 1. Espaces de travail divisés : Les utilisateurs utilisent le TEM dans une pièce divisée avec un confort réduisant les interférences environnementales sur le TEM. 2. Efficacité opérationnelle élevée : le logiciel désigné intègre des processus hautement automatisés, permettant une interaction TEM efficace avec une surveillance en temps réel. 3. Expérience opérationnelle améliorée : Équipé d'un canon à électrons à émission de champ avec un système hautement automatisé. 4. Haute extensibilité : Il existe suffisamment d'interfaces réservées aux utilisateurs pour passer à une configuration supérieure, qui répond à diverses exigences d'application.
Apprendre encore plus