Products

Products

CIQTEK is the manufacturer and global supplier of high-performance scientific instruments, such as Electron Microscopes, Electron Paramagnetic Resonance (Electron Spin Resonance), Gas Adsorption Analyzers, Scanning NV Microscopes, etc.
Apprendre encore plus
Laisser un message
Soumettre
Applications
Microscope électronique à balayage pour l'analyse des fractures métalliques
Microscope électronique à balayage pour l'analyse des fractures métalliques
Le microscope électronique à balayage , en tant qu'outil d'analyse microscopique couramment utilisé, peut être observé sur tous les types de fractures métalliques, de détermination du type de fracture, d'analyse morphologique, d'analyse de défaillance et d'autres recherches.   Qu'est-ce qu'une fracture métallique ?   Lorsqu'un métal est brisé par une force externe, deux sections correspondantes sont laissées au site de fracture, appelée « fracture ». La forme et l’apparence de cette fracture contiennent de nombreuses informations importantes sur le processus de fracture.   En observant et en étudiant la morphologie de la fracture, nous pouvons analyser la cause, la nature, le mode, le mécanisme, etc., et également comprendre les détails de l'état de contrainte et du taux d'expansion de la fissure au moment de la fracture. Telle une « scène », la fracture retient l’ensemble du processus d’apparition de la fracture. Par conséquent, pour l’étude des problèmes de fracture des métaux, l’observation et l’analyse de la fracture constituent une étape et un moyen très importants. Le microscope électronique à balayage présente les avantages d'une grande profondeur de champ et d'une haute résolution et a été largement utilisé dans le domaine de l'analyse des fractures.   Application du microscope électronique à balayage à l' analyse des fractures métalliques​   Il existe diverses formes de rupture de rupture de métal. Classés selon le degré de déformation avant rupture, ils peuvent être divisés en rupture fragile, rupture ductile et rupture mixte fragile et ductile. Différentes formes de fracture auront une morphologie microscopique caractéristique, qui peut être caractérisée par SEM pour aider les chercheurs à effectuer rapidement une analyse de fracture.   Fracture Ductile   La fracture ductile est une fracture qui se produit après une déformation importante d'un élément, caractérisée principalement par une déformation macroplastique importante. La morphologie macroscopique est une fracture en cupule et cône ou une fracture par cisaillement pur, et la surface de fracture est fibreuse et constituée de nids résistants. Comme le montre la figure 1, au microscope, sa fracture est caractérisée par : la surface de fracture est constituée d'un certain nombre de minuscules piqûres microporeuses en forme de verre à vin, généralement appelées fosses résistantes. La fosse de dureté est la trace laissée sur la surface de fracture après déformation plastique du matériau dans la gamme de micro-régions générées par le micro-vide, à travers la nucléation/croissance/agrégation, et finalement interconnectée pour conduire à la fracture.     Fig. 1 Fracture ductile du métal/10kV/Inlens   Fracture fragile​   La rupture fragile est la rupture d'un élément sans déformation significative. Il y a peu de déformation plastique du matériau au moment de la rupture. Bien que macroscopiquement, il soit cristallin, au microscope, il comprend une fracture le long du cristal, une fracture...
Caractérisation de la distribution de la taille des pores du tamis moléculaire 5A
Caractérisation de la distribution de la taille des pores du tamis moléculaire 5A
Le tamis moléculaire 5A est une sorte d'aluminosilicate de type calcium à structure de réseau cubique, également connu sous le nom de zéolite de type CaA. Le tamis moléculaire 5A a développé une structure de pores et une excellente adsorption sélective, qui est largement utilisée dans la séparation des alcanes n-isomérisés, la séparation de l'oxygène et de l'azote, ainsi que du gaz naturel, du gaz de décomposition de l'ammoniac et du séchage d'autres gaz industriels et liquides. Le tamis moléculaire 5A a une taille de pores efficace de 0,5 nm, et la détermination de la répartition des pores est généralement caractérisée par l'adsorption de gaz à l'aide d'un instrument d'adsorption physique. La taille effective des pores du tamis moléculaire 5A est d'environ 0,5 nm et sa distribution de la taille des pores est généralement caractérisée par l'adsorption de gaz à l'aide d'un instrument d'adsorption physique. La surface spécifique et la distribution de la taille des pores des tamis moléculaires 5A ont été caractérisées par les analyseurs de surface spécifique et de taille des pores de la série CIQTEK EASY- V. Avant les tests, les échantillons ont été dégazés par chauffage sous vide à 300 ℃ pendant 6 heures. Comme le montre la figure 1, la surface spécifique de l'échantillon a été calculée comme étant de 776,53 m 2 /g par l'équation BET multipoint, puis la surface microporeuse de l'échantillon a été obtenue comme étant de 672,04 m 2 /g , la surface externe la surface microporeuse était de 104,49 m 2 /g et le volume du tamis microporeux était de 0,254 cm 3 /g par la méthode de tracé en T, qui a montré que la surface microporeuse de ce tamis moléculaire représentait environ 86,5 %. De plus, l'analyse du tracé de l'isotherme d'adsorption-désorption N 2 de ce tamis moléculaire 5A (Fig. 2, à gauche) révèle que l'isotherme d'adsorption montre que la quantité d'adsorption augmente fortement avec l'augmentation de la pression relative lorsque la pression relative est petit, et le remplissage des micropores se produit, et la courbe est relativement plate après avoir atteint une certaine valeur, ce qui suggère que l'échantillon est riche en micropores. Le calcul de la distribution de la taille des pores microporeux à l'aide du modèle SF (Fig. 2, panneau de droite) a donné une distribution de la taille des pores microporeux concentrée à 0, 48 nm, ce qui correspond à la taille des pores des tamis moléculaires 5A.   Fig. 1 Résultats du test de surface spécifique (à gauche) et résultats du tracé t (à droite) du tamis moléculaire 5A   Fig. 2 Isothermes de sorption et de désorption N 2 (à gauche) et tracés de distribution de la taille des pores SF (à droite) d'échantillons de tamis moléculaire 5A      Analyseur automatique de surface et de porosimétrie BET CIQTEK | EASY-V 3440 EASY-V 3440 est l'instrument d'analyse de la surface spécifique et de la taille des pores BET développé indépendamment par CIQTEK, en utilisant la méthode.   ▪ Test de surface spécifique, plage...
Caractérisation de la surface spécifique et de la distribution de la taille des pores des tamis moléculaires ZIF
Caractérisation de la surface spécifique et de la distribution de la taille des pores des tamis moléculaires ZIF
Les matériaux à squelette zéolitique imidazolium (ZIF) en tant que sous-classe de squelettes métallo-organiques (MOF), les matériaux ZIF combinent la haute stabilité des zéolites inorganiques et la surface spécifique élevée, la porosité élevée et la taille des pores réglables des matériaux MOF, qui peuvent être appliqués à des processus catalytiques et de séparation efficaces, de sorte que les ZIF et leurs dérivés ont un bon potentiel d'utilisation dans la catalyse, l'adsorption et la séparation, l'électrochimie, les biocapteurs et la biomédecine et dans d'autres domaines offrant de bonnes perspectives d'application. Ce qui suit est une étude de cas de la caractérisation des tamis moléculaires ZIF à l’aide de l’analyseur de surface spécifique et de taille de pores de la série CIQTEK EASY- V . Comme le montre la figure 3 à gauche, la surface spécifique de ce tamis moléculaire ZIF est de 857,63 m2 / g. Le matériau présente une grande surface spécifique favorable à la diffusion de substances réactives. À partir des isothermes d'adsorption et de désorption de N 2 (Fig. 3, à droite), on peut voir qu'il y a une forte augmentation de l'adsorption dans la région des basses pressions partielles (P/P 0 < 0,1), attribuée au remplissage. de micropores, indiquant qu'il y a une certaine quantité de structure microporeuse dans le matériau, et il y a une boucle d'hystérésis dans la plage de P/P 0 d'environ 0,40 à 0,99, ce qui suggère qu'il y a une abondance de structure mésoporeuse dans ce ZIF tamis moléculaire. Le graphique de distribution de la taille des pores SF (Fig. 4, à gauche) montre que la taille des pores la plus disponible de cet échantillon est de 0, 56 nm. Le volume total des pores de ce tamis moléculaire ZIF est de 0,97 cm 3 /g, et le volume microporeux est de 0,64 cm 3 /g, avec 66 % de micropores, et la structure microporeuse peut augmenter considérablement la surface spécifique de l'échantillon, mais le le tamis moléculaire limitera l'activité catalytique dans certaines conditions en raison de la taille plus petite des pores. Cependant, dans certaines conditions, la taille plus petite des pores limitera la vitesse de diffusion de la réaction catalytique, ce qui limite les performances du catalyseur à tamis moléculaire. Cependant, la structure mésoporeuse peut évidemment compenser ce défaut de la structure microporeuse, donc la structure de la combinaison microporeuse-mésoporeuse peut résoudre efficacement le problème de la limitation de la capacité de transfert de masse du tamis moléculaire traditionnel à pore unique.     Fig. 1 Résultats des tests de surface spécifique (à gauche) et isothermes de sorption et de désorption de N 2 (à droite) pour les tamis moléculaires ZIF Fig. 2 Distribution de la taille des pores SF (à gauche) et distribution de la taille des pores NLDFT (à droite) du tamis moléculaire ZIF
Application of Scanning Electron Microscopy in Electrolytic Copper Foils
Application of Scanning Electron Microscopy in Electrolytic Copper Foils
The characterization of copper foil morphology by scanning electron microscopy can help researchers and developers to optimize and improve the preparation process and performance of copper foils to further meet the existing and future quality requirements of high-performance lithium-ion batteries. Wide Range of Copper Applications Copper metal is widely used in lithium-ion batteries and printed circuit boards because of its ductility, high conductivity, ease of processing and low price. Depending on the production process, copper foil can be categorized into calendered copper foil and electrolytic copper foil. Calendered copper foil is made of copper blocks rolled repeatedly, with high purity, low roughness and high mechanical properties, but at a higher cost. Electrolytic copper foil, on the other hand, has the advantage of low cost and is the mainstream copper foil product in the market at present. The specific process of electrolytic copper foil is (1) dissolving copper: dissolve raw copper to form sulfuric acid-copper sulfate electrolyte, and remove impurities through multiple filtration to improve the purity of the electrolyte. (2) Raw foil preparation: usually polished pure titanium rolls as the cathode, through electrodeposition of copper ions in the electrolyte is reduced to the surface of the cathode to form a certain thickness of copper layer. (3) Surface treatment: the raw foil is peeled off from the cathode roll, and then after post-treatment, the finished electrolytic copper foil can be obtained. Figure 1 Electrolytic Copper Foil Production Process Copper Metal in Lithium-ion Batteries Lithium-ion batteries are mainly composed of active materials (cathode material, anode material), diaphragm, electrolyte and conductive collector. Positive potential is high, copper is easy to be oxidized at higher potentials, so copper foil is often used as the anode collector of lithium-ion batteries. The tensile strength, elongation and other properties of copper foil directly affect the performance of lithium-ion batteries. At present, lithium-ion batteries are mainly developed towards the trend of "light and thin", so the performance of electrolytic copper foil also puts forward higher requirements such as ultra-thin, high tensile strength and high elongation. How to effectively improve the electrolytic copper foil process to enhance the mechanical properties of copper foil is the main research direction of copper foil in the future. Suitable additive formulation in the foil making process is the most effective means to regulate the performance of electrolytic copper foil, and qualitative and quantitative research on the effect of additives on the surface morphology and physical properties of electrolytic copper foil has been a research hotspot for scholars at home and abroad. In materials science, the microstructure determines its mechanical properties, and the use of scanning electron microscopy to characterize the changes in the surface micro-m...
Détection des contaminants environnementaux - Applications EPR (ESR)
Détection des contaminants environnementaux - Applications EPR (ESR)
En tant que crise mondiale, la pollution de l'environnement affecte la vie et la santé humaines. Il existe une nouvelle classe de substances nocives pour l'environnement parmi les polluants de l'air, de l'eau et du sol : les radicaux libres persistants dans l'environnement (EPFR). Les EPFR sont omniprésents dans l'environnement et peuvent induire la génération d'espèces d'oxydes réactifs (ROS), qui provoquent des dommages aux cellules et à l'organisme, sont l'une des causes du cancer et ont de graves effets biologiques. La technologie de résonance paramagnétique électronique (EPR ou ESR) peut détecter les EPFR et les quantifier pour trouver la source du danger et résoudre le problème sous-jacent.     Que sont les EPFR   Les EPFR sont une nouvelle classe de substances à risque environnemental proposées par rapport à la préoccupation traditionnelle des radicaux libres à courte durée de vie. Ils peuvent exister dans l’environnement pendant des dizaines de minutes à des dizaines de jours, avoir une longue durée de vie et sont stables et persistants. Sa stabilité repose sur sa stabilité structurelle, difficile à décomposer et il est difficile de réagir les uns avec les autres pour éclater. Sa persistance est basée sur l'inertie qui fait qu'il n'est pas facile de réagir avec d'autres substances présentes dans l'environnement, il peut donc persister dans l'environnement. Les EPFR courants sont le cyclopentadiényle, la semiquinone, le phénoxy et d'autres radicaux.   EPFR courants     D’où viennent les EPFR ?   Les EPFR se trouvent dans un large éventail de milieux environnementaux, tels que les particules atmosphériques (par exemple PM 2,5), les émissions des usines, le tabac, le coke de pétrole, le bois et le plastique, les particules de combustion du charbon, les fractions solubles dans les plans d'eau et les sols contaminés par des matières organiques, etc. Les EPFR suivent un large éventail de voies de transport dans les milieux environnementaux et peuvent être transportés par ascension verticale, transport horizontal, dépôt vertical sur des plans d'eau, dépôt vertical sur terre et migration de plans d'eau vers la terre. Au cours du processus de migration, de nouveaux radicaux réactifs peuvent être générés, qui affectent directement l'environnement et contribuent aux sources naturelles de polluants.   Formation et transfert multimédia d'EPFR (Environmental Pollution 248 (2019) 320-331)     Application de la technique EPR pour la détection des EPFR   L'EPR (ESR) est la seule technique de spectroscopie d'ondes capable de détecter et d'étudier directement les substances contenant des électrons non appariés. Elle joue un rôle important dans la détection des EPFR en raison de ses avantages tels qu'une sensibilité élevée et une surveillance in situ en temps réel. Pour la détection des EPFR, la spectroscopie EPR (ESR) fournit des informations dans les dimensions spatiales et temporelles. La dimensi...
Haut

Laisser un message

Laisser un message
N'hésitez pas à nous contacter pour plus de détails, demander un devis ou réserver une démo en ligne ! Nous vous répondrons dès que possible.
Soumettre

Maison

Des produits

Chat

contact