Applications
Publications « Science » : CIQTEK EPR facilite la recherche sur les réactionnismes catalytiques
Publications « Science » : CIQTEK EPR facilite la recherche sur les réactionnismes catalytiques
Récemment, les équipes de recherche dirigées par le professeur Aiwen Lei de l'Université de Wuhan et le professeur Lin He de l'Institut de physique chimique de Lanzhou, Académie chinoise des sciences, ont réalisé une percée significative dans la synthèse asymétrique de l'urée. Les résultats de leurs recherches, intitulés « Reconnaissance synchrone des amines dans la carbonylation oxydative vers des urées asymétriques » ont été publiés dans la prestigieuse revue internationale « Science » le 15 novembre. Publierd dans "Science" avec le soutien de CIQTEK EPR Les urées asymétriques sont des composés importants largement utilisés en médecine, en agriculture et en science des matériaux. La synthèse d'urées asymétriques par réactions aminés est la méthode la plus efficace. Cependant, atteindre une sélectivité élevée dans la synthèse d’urées asymétriques est un défi en raison de la réactivité compétitive des deux amines. Jusqu’à présent, aucune méthode catalysée par des métaux ne peut reconnaître et installer efficacement et sélectivement plusieurs amines sur le même site. Dans leurs recherches, les équipes ont analysé en profondeur le processus de transfert d'électrons entre les sels de cuivre et les amines et ont réussi à détecter le cation radical ammonium généré in situ et ses espèces radicalaires capturées avec le DMPO pendant la réaction. Cela a fourni une preuve cruciale pour révéler le mécanisme d’activation des radicaux libres des amines secondaires médié par les ions cuivre. En combinant l'activation nucléophile sélective des amines primaires par des catalyseurs au cobalt, les équipes ont conçu une « stratégie de reconnaissance synchrone » qui a permis d'obtenir des réactions de carbonylation efficaces d'un rapport molaire 1:1 de deux amines, produisant des produits d'urée asymétriques hautement sélectifs. Cette réalisation ouvre de nouvelles voies pour la production industrielle de composés d'urée asymétriques et devrait avoir de larges applications dans des domaines tels que la médecine et l'agriculture. Il démontre également les capacités de caractérisation précises du spectromètre EPR développé par CIQTEK, apportant un soutien solide aux chercheurs pour approfondir leur compréhension des mécanismes réactionnels et développer des stratégies de synthèse innovantes. . Le document de recherche a été publié dans « Science » et peut être consulté au lien suivant : https://www.science.org/doi/10.1126/science.adl0149 Une « pluie opportune » qui permet d'obtenir la satisfaction des clients et d'écrire une histoire de réussite Derrière cette réalisation se cache une histoire de collaboration entre CIQTEK et l'équipe de recherche. En octobre 2021, un spectromètre EPR importé du Collège de chimie et des sciences moléculaires de l'Université de Wuhan a rencontré un dysfonctionnement soudain. Après avoir contacté le fabricant, ils ont appris que la réparation prendrait beaucoup de temps. Cela représentait un défi pour le travail expérimental des profess...
Des chercheurs de l'Université Cornell utilisent le spectromètre CIQTEK ESR pour analyser le spectre des radicaux libres dans les échantillons
Des chercheurs de l'Université Cornell utilisent le spectromètre CIQTEK ESR pour analyser le spectre des radicaux libres dans les échantillons
  Poursuivant la recherche et l'article précédents, les chercheurs de l'Université Cornell, Jess Whittemore, ont utilisé une démonstration pour montrer le processus de capture et de quantification des radicaux libres émis par les cigarettes afin d'étudier les effets nocifs des radicaux libres qui, en plus des goudrons, peuvent conduire à cancer.   Afin d'analyser les spectres des radicaux dans les échantillons, elle a utilisé le spectromètre ESR de paillasse développé par CIQTEK .   Comme elle l'a décrit : « Le spectromètre de paillasse CIQTEK est de taille plutôt compacte, ce qui constitue un grand avantage pour une utilisation dans tous types de laboratoires. Mais au-delà de cela, il présente une sensibilité remarquable pour nos études ESR. Pour ces raisons, nous pensons que ce spectromètre ESR de table de CIQTEK est le meilleur du marché. "  
Article approuvé par JACS ! CIQTEK EPR contribue à 27 publications de recherche de haut niveau
Article approuvé par JACS ! CIQTEK EPR contribue à 27 publications de recherche de haut niveau
Nous sommes heureux d'annoncer que les produits du spectromètre CIQTEK EPR ont contribué à  27  publications de recherche de haut niveau  à ce jour !     Un des résultats sélectionnés    Réduction du diazote catalysée par le vanadium en ammoniac via un intermédiaire [V]═NNH 2  . Journal de l'American Chemical Society (2023) Wenshuang Huang, Ling-Ya Peng, Jiayu Zhang, Chenrui Liu, Guoyong Song, Ji-Hu Su, Wei-Hai Fang, Ganglong Cui et Shaowei Hu     Abstrait   L'atmosphère terrestre est riche en N 2  (78 %), mais l'activation et la conversion de l'azote constituent une tâche difficile en raison de son inertie chimique. L'industrie de l'ammoniac utilise des conditions de température et de pression élevées pour convertir le N 2  et le H 2  en NH 3  à la surface des catalyseurs solides. Dans des conditions ambiantes, certains micro-organismes peuvent lier et convertir le N 2  en NH 3  via des enzymes de fixation d'azote à base de Fe (Mo/V). Bien que de grands progrès aient été réalisés dans la structure et les intermédiaires des enzymes de fixation de l'azote, la nature de la liaison du N 2  au site actif et le mécanisme détaillé de la réduction du N 2  restent incertains. Diverses études sur l'activation du N 2  avec des complexes de métaux de transition ont été réalisées pour mieux comprendre le mécanisme réactionnel et développer des catalyseurs pour la synthèse de l'ammoniac dans des conditions douces. Cependant, jusqu'à présent, la conversion catalytique du N 2  en NH 3  par des complexes de métaux de transition reste un défi. Malgré le rôle crucial du vanadium dans la fixation biologique de l'azote, il existe peu de complexes de vanadium bien définis capables de catalyser la conversion du N 2  en NH 3 . En particulier, les intermédiaires V(NxHy) obtenus à partir des réactions de transfert proton/électron du N 2 ligaturé  restent inconnus. Ici, cet article rapporte la réduction catalysée de l'azote en ammoniac par un complexe métallique de vanadium et la première isolation et caractérisation d'un intermédiaire complexe hydrazide neutre ([V] = NNH 2 ) à partir d'un système activé par l'azote, avec le processus de conversion cyclique simulé par la réduction du complexe aminé vanadium protoné ([V]-NH 2 ) pour obtenir un composé diazote et libération d'ammoniac. Ces résultats fournissent des informations sans précédent sur le mécanisme de réduction du N 2  associé aux enzymes fixatrices d'azote FeV en combinant des calculs théoriques pour élucider la conversion possible de l'azote en ammoniac via la voie distale dans ce système catalytique.   Le groupe du professeur Shaowei Hu de l'Université normale de Pékin se consacre au développement de complexes de métaux de transition pour l'activation de petites molécules inertes. Récemment, en collaboration avec le groupe du professeur Ganglong Cui, nous avons rapporté la rédu...
Apprendre encore plus
Laisser un message
Soumettre
Haut

Laisser un message

Laisser un message
N'hésitez pas à nous contacter pour plus de détails, demander un devis ou réserver une démo en ligne ! Nous vous répondrons dès que possible.
Soumettre

Maison

Des produits

Chat

contact