Qu'est-ce qu'une fracture métallique ? Lorsqu'un métal se brise sous l'effet de forces extérieures, il laisse derrière lui deux surfaces correspondantes appelées « surfaces de fracture » ou « faces de fracture ». La forme et l'apparence de ces surfaces contiennent des informations importantes sur le processus de fracture. En observant et en étudiant la morphologie de la surface de fracture, nous pouvons analyser les causes, les propriétés, les modes et les mécanismes de la fracture. Il fournit également des informations sur les conditions de contrainte et les taux de propagation des fissures au cours de la fracture. Semblable à une enquête « sur site », la surface de fracture préserve l'ensemble du processus de fracture. Par conséquent, l’examen et l’analyse de la surface de fracture constituent une étape et une méthode cruciales dans l’étude des fractures métalliques. Le microscope électronique à balayage, avec sa grande profondeur de champ et sa haute résolution, a été largement utilisé dans le domaine de l'analyse des fractures. L'application du microscope électronique à balayagepe dans l'analyse des fractures métalliques Les fractures métalliques peuvent survenir selon différents modes de défaillance. En fonction du niveau de déformation avant rupture, ils peuvent être classés comme rupture fragile, rupture ductile ou un mélange des deux. Différents modes de fracture présentent des morphologies microscopiques caractéristiques, et la caractérisation CIQTEK au microscope électronique à balayage peut aider les chercheurs à analyser rapidement les surfaces de fracture. Fracture ductile La fracture ductile fait référence à la fracture qui se produit après une déformation importante du composant, et sa principale caractéristique est l'apparition d'une déformation plastique macroscopique évidente. L'aspect macroscopique est celui d'une cuvette-cône ou d'un cisaillement avec une surface de fracture fibreuse, caractérisée par des fossettes. Comme le montre la figure 1, à l'échelle microscopique, la surface de fracture est constituée de petits micropores en forme de coupe appelés fossettes. Les fossettes sont des microvides formés par une déformation plastique localisée dans le matériau. Ils se nucléent, grandissent et fusionnent, conduisant finalement à une fracture et laissant des traces sur la surface de fracture. Figure 1 : Surface de rupture ductile du métal / 10kV / Inlens Fracture fragile La rupture fragile fait référence à la rupture qui se produit sans déformation plastique significative du composant. Le matériau ne subit que peu ou pas de déformation plastique avant rupture. Macroscopiquement, il apparaît cristallin et au microscope, il peut présenter une fracture intergranulaire, une fracture par clivage ou une fracture quasi-clivée. Comme le montre la figure 2, il s’agit d’une surface de fracture mixte fragile-ductile de métal. Dans la région de fracture ductile, des fossettes visibles peuvent être observées. Dans la région de fracture frag...
Voir plusRésumé : Le dioxyde de titane, largement connu sous le nom de blanc de titane, est un pigment inorganique blanc important largement utilisé dans diverses industries telles que les revêtements, les plastiques, le caoutchouc, la fabrication du papier, les encres et les fibres. Des études ont montré que les propriétés physiques et les propriétés chimiques du dioxyde de titane, telles que les performances photocatalytiques, le pouvoir couvrant et la dispersibilité, sont étroitement liées à sa surface spécifique et à sa structure de pores. L'utilisation de techniques d'adsorption statique de gaz pour une caractérisation précise de paramètres tels que la surface spécifique et la distribution de la taille des pores du dioxyde de titane peut être utilisée pour évaluer sa qualité et optimiser ses performances dans des applications spécifiques, améliorant ainsi encore son efficacité dans divers domaines. À propos du dioxyde de titane : Le dioxyde de titane est un pigment inorganique blanc vital composé principalement de dioxyde de titane. Des paramètres tels que la couleur, la taille des particules, la surface spécifique, la dispersibilité et la résistance aux intempéries déterminent les performances du dioxyde de titane dans différentes applications, la surface spécifique étant l'un des paramètres clés. La caractérisation de la surface spécifique et de la taille des pores aide à comprendre la dispersibilité du dioxyde de titane, optimisant ainsi ses performances dans des applications telles que les revêtements et les plastiques. Le dioxyde de titane avec une surface spécifique élevée présente généralement un pouvoir couvrant et un pouvoir colorant plus élevés. De plus, des recherches ont indiqué que lorsque le dioxyde de titane est utilisé comme support de catalyseur, une taille de pores plus grande peut améliorer la dispersion des composants actifs et améliorer l'activité catalytique globale, tandis qu'une taille de pores plus petite augmente la densité des sites actifs, contribuant ainsi à dans l’amélioration de l’efficacité de la réaction. Par conséquent, en régulant la structure des pores du dioxyde de titane, ses performances en tant que support de catalyseur peuvent être améliorées. En résumé, la caractérisation de la surface spécifique et de la distribution de la taille des pores aide non seulement à évaluer et à optimiser les performances du dioxyde de titane dans diverses applications, mais constitue également un moyen important de contrôle qualité dans le processus de production. Caractérisation précise du titane le dioxyde permet une meilleure compréhension et utilisation de ses propriétés uniques pour répondre aux exigences dans différents domaines d'application. Exemples d'application des techniques d'adsorption de gaz dans la caractérisation du dioxyde de titane : 1. Caractérisation de la surface spécifique et de la distribution de la taille des pores du dioxyde de titane pour les catalyseurs DeNOx La réduction catalytique sélective (SCR) es...
Voir plusLes tamis moléculaires sont des aluminosilicates hydratés ou des zéolites naturelles synthétisés artificiellement avec des propriétés de tamisage moléculaire. Ils ont des pores de taille uniforme et des canaux et cavités bien disposés dans leur structure. Des tamis moléculaires de différentes tailles de pores peuvent séparer des molécules de différentes tailles et formes. Ils possèdent des fonctions telles que l’adsorption, la catalyse et l’échange d’ions, qui leur confèrent d’énormes applications potentielles dans divers domaines tels que le génie pétrochimique, la protection de l’environnement, le biomédical et l’énergie. En 1925, l' effet de séparation moléculaire de la zéolite a été signalé pour la première fois et la zéolite a acquis un nouveau nom : tamis moléculaire . Cependant, la petite taille des pores des tamis moléculaires zéolitiques limitait leur champ d’application, c’est pourquoi les chercheurs se sont tournés vers le développement de matériaux mésoporeux dotés de pores de plus grande taille. Les matériaux mésoporeux (une classe de matériaux poreux avec des tailles de pores allant de 2 à 50 nm) ont une surface spécifique extrêmement élevée, des structures de pores régulièrement ordonnées et des tailles de pores réglables en continu. Depuis leur création, les matériaux mésoporeux sont devenus l'une des frontières interdisciplinaires. Pour les tamis moléculaires, la taille des particules et leur distribution granulométrique sont des paramètres physiques importants qui affectent directement les performances et l'utilité du processus de production, en particulier dans la recherche sur les catalyseurs. La taille des grains cristallins, la structure des pores et les conditions de préparation des tamis moléculaires ont des effets significatifs sur les performances du catalyseur. Par conséquent, l’exploration des changements dans la morphologie des cristaux des tamis moléculaires, le contrôle précis de leur forme, ainsi que la régulation et l’amélioration des performances catalytiques sont d’une grande importance et ont toujours été des aspects importants de la recherche sur les tamis moléculaires. La microscopie électronique à balayage fournit des informations microscopiques importantes pour étudier la relation structure-performance des tamis moléculaires, aidant ainsi à guider l'optimisation de la synthèse et le contrôle des performances des tamis moléculaires. Le tamis moléculaire ZSM-5 a une structure MFI. La sélectivité en produit, la réactivité et la stabilité des catalyseurs à tamis moléculaire de type MFI avec différentes morphologies cristallines peuvent varier en fonction de la morphologie. Figure 1 (a) Topologie du squelette de l'IMF Voici des images du tamis moléculaire ZSM-5 capturées à l'aide du microscope électronique à balayage à émission de champ haute résolution CIQTEK SEM5000X . Figure 1 (b) Tamis moléculaire ZSM-5/500 V/Inlens Le SBA-15 est un matériau mésoporeux courant à base...
Voir plusLes adsorbants poreux jouent un rôle important dans les domaines de la purification de l'environnement, du stockage d'énergie et de la conversion catalytique en raison de leur structure et de leurs propriétés poreuses uniques. Les adsorbants poreux ont généralement une surface spécifique élevée et une distribution riche des pores, qui peuvent interagir efficacement avec les molécules du gaz ou du liquide. L’utilisation d’une méthode d’adsorption statique de gaz pour caractériser avec précision des paramètres tels que le BET et la distribution des pores peut aider à mieux comprendre les propriétés et les performances d’adsorption des adsorbants poreux. BET et P ore D istribution des adsorbants poreux Les adsorbants poreux sont un type de matériau doté d'une surface spécifique élevée et d'une structure de pores riche, qui peut capturer et fixer des molécules dans un gaz ou un liquide par adsorption physique ou chimique. Il en existe de nombreux types, parmi lesquels les adsorbants poreux inorganiques (charbon actif, gel de silice, etc.), les adsorbants polymères organiques (résines échangeuses d'ions, etc.), les polymères de coordination (MOF, etc.) et les adsorbants poreux composites, etc. Une compréhension approfondie des propriétés physiques des adsorbants poreux est essentielle pour optimiser les performances et élargir les domaines d'application. Les domaines d'application de l'analyseur de surface et de porosimétrie BET dans l'industrie des adsorbants poreux comprennent principalement le contrôle de la qualité, la recherche et le développement de nouveaux matériaux, l'optimisation des processus de séparation, etc. En testant avec précision la surface spécifique et la distribution des pores, les performances des adsorbants poreux peut être amélioré de manière ciblée pour répondre aux besoins d’applications spécifiques et améliorer l’adsorption sélective des molécules cibles. En résumé, l'analyse de la surface spécifique et de la distribution des pores des adsorbants poreux via la caractérisation de l'adsorption de gaz est bénéfique pour évaluer la capacité, la sélectivité et l'efficacité de l'adsorption, et revêt une grande importance pour promouvoir le développement de nouveaux adsorbants à haute efficacité. Caractérisation des propriétés d'adsorption de gaz des matériaux MOF Les matériaux de structure métallo-organiques (MOF) sont devenus un nouveau type de matériau d'adsorption qui a beaucoup attiré l'attention en raison de sa porosité élevée, de sa grande surface spécifique, de sa structure réglable et de sa fonctionnalisation facile. Grâce à la régulation synergique de la modification des groupes fonctionnels et de l'ajustement de la taille des pores, les performances de capture et de séparation du CO 2 des matériaux MOF peuvent être améliorées dans une certaine mesure. L'UiO-66 est un adsorbant MOF largement utilisé, souvent utilisé dans l'adsorption de ...
Voir plusLe microscope électronique à balayage , en tant qu'outil d'analyse microscopique couramment utilisé, peut être observé sur tous les types de fractures métalliques, de détermination du type de fracture, d'analyse morphologique, d'analyse de défaillance et d'autres recherches. Qu'est-ce qu'une fracture métallique ? Lorsqu'un métal est brisé par une force externe, deux sections correspondantes sont laissées au site de fracture, appelée « fracture ». La forme et l’apparence de cette fracture contiennent de nombreuses informations importantes sur le processus de fracture. En observant et en étudiant la morphologie de la fracture, nous pouvons analyser la cause, la nature, le mode, le mécanisme, etc., et également comprendre les détails de l'état de contrainte et du taux d'expansion de la fissure au moment de la fracture. Telle une « scène », la fracture retient l’ensemble du processus d’apparition de la fracture. Par conséquent, pour l’étude des problèmes de fracture des métaux, l’observation et l’analyse de la fracture constituent une étape et un moyen très importants. Le microscope électronique à balayage présente les avantages d'une grande profondeur de champ et d'une haute résolution et a été largement utilisé dans le domaine de l'analyse des fractures. Application du microscope électronique à balayage à l' analyse des fractures métalliques Il existe diverses formes de rupture de rupture de métal. Classés selon le degré de déformation avant rupture, ils peuvent être divisés en rupture fragile, rupture ductile et rupture mixte fragile et ductile. Différentes formes de fracture auront une morphologie microscopique caractéristique, qui peut être caractérisée par SEM pour aider les chercheurs à effectuer rapidement une analyse de fracture. Fracture Ductile La fracture ductile est une fracture qui se produit après une déformation importante d'un élément, caractérisée principalement par une déformation macroplastique importante. La morphologie macroscopique est une fracture en cupule et cône ou une fracture par cisaillement pur, et la surface de fracture est fibreuse et constituée de nids résistants. Comme le montre la figure 1, au microscope, sa fracture est caractérisée par : la surface de fracture est constituée d'un certain nombre de minuscules piqûres microporeuses en forme de verre à vin, généralement appelées fosses résistantes. La fosse de dureté est la trace laissée sur la surface de fracture après déformation plastique du matériau dans la gamme de micro-régions générées par le micro-vide, à travers la nucléation/croissance/agrégation, et finalement interconnectée pour conduire à la fracture. Fig. 1 Fracture ductile du métal/10kV/Inlens Fracture fragile La rupture fragile est la rupture d'un élément sans déformation significative. Il y a peu de déformation plastique du matériau au moment de la rupture. Bien que macroscopiquement, il soit cristallin, au microscope, il comprend une fracture le long du cristal, une fracture...
Voir plusLe tamis moléculaire 5A est une sorte d'aluminosilicate de type calcium à structure de réseau cubique, également connu sous le nom de zéolite de type CaA. Le tamis moléculaire 5A a développé une structure de pores et une excellente adsorption sélective, qui est largement utilisée dans la séparation des alcanes n-isomérisés, la séparation de l'oxygène et de l'azote, ainsi que du gaz naturel, du gaz de décomposition de l'ammoniac et du séchage d'autres gaz industriels et liquides. Le tamis moléculaire 5A a une taille de pores efficace de 0,5 nm, et la détermination de la répartition des pores est généralement caractérisée par l'adsorption de gaz à l'aide d'un instrument d'adsorption physique. La taille effective des pores du tamis moléculaire 5A est d'environ 0,5 nm et sa distribution de la taille des pores est généralement caractérisée par l'adsorption de gaz à l'aide d'un instrument d'adsorption physique. La surface spécifique et la distribution de la taille des pores des tamis moléculaires 5A ont été caractérisées par les analyseurs de surface spécifique et de taille des pores de la série CIQTEK EASY- V. Avant les tests, les échantillons ont été dégazés par chauffage sous vide à 300 ℃ pendant 6 heures. Comme le montre la figure 1, la surface spécifique de l'échantillon a été calculée comme étant de 776,53 m 2 /g par l'équation BET multipoint, puis la surface microporeuse de l'échantillon a été obtenue comme étant de 672,04 m 2 /g , la surface externe la surface microporeuse était de 104,49 m 2 /g et le volume du tamis microporeux était de 0,254 cm 3 /g par la méthode de tracé en T, qui a montré que la surface microporeuse de ce tamis moléculaire représentait environ 86,5 %. De plus, l'analyse du tracé de l'isotherme d'adsorption-désorption N 2 de ce tamis moléculaire 5A (Fig. 2, à gauche) révèle que l'isotherme d'adsorption montre que la quantité d'adsorption augmente fortement avec l'augmentation de la pression relative lorsque la pression relative est petit, et le remplissage des micropores se produit, et la courbe est relativement plate après avoir atteint une certaine valeur, ce qui suggère que l'échantillon est riche en micropores. Le calcul de la distribution de la taille des pores microporeux à l'aide du modèle SF (Fig. 2, panneau de droite) a donné une distribution de la taille des pores microporeux concentrée à 0, 48 nm, ce qui correspond à la taille des pores des tamis moléculaires 5A. Fig. 1 Résultats du test de surface spécifique (à gauche) et résultats du tracé t (à droite) du tamis moléculaire 5A Fig. 2 Isothermes de sorption et de désorption N 2 (à gauche) et tracés de distribution de la taille des pores SF (à droite) d'échantillons de tamis moléculaire 5A Analyseur automatique de surface et de porosimétrie BET CIQTEK | EASY-V 3440 EASY-V 3440 est l'instrument d'analyse de la surface spécifique et de la taille des pores BET développé indépendamment par CIQTEK, en utilisant la méthode. ▪ Test de surface spécifique, plage...
Voir plusLes matériaux à squelette zéolitique imidazolium (ZIF) en tant que sous-classe de squelettes métallo-organiques (MOF), les matériaux ZIF combinent la haute stabilité des zéolites inorganiques et la surface spécifique élevée, la porosité élevée et la taille des pores réglables des matériaux MOF, qui peuvent être appliqués à des processus catalytiques et de séparation efficaces, de sorte que les ZIF et leurs dérivés ont un bon potentiel d'utilisation dans la catalyse, l'adsorption et la séparation, l'électrochimie, les biocapteurs et la biomédecine et dans d'autres domaines offrant de bonnes perspectives d'application. Ce qui suit est une étude de cas de la caractérisation des tamis moléculaires ZIF à l’aide de l’analyseur de surface spécifique et de taille de pores de la série CIQTEK EASY- V . Comme le montre la figure 3 à gauche, la surface spécifique de ce tamis moléculaire ZIF est de 857,63 m2 / g. Le matériau présente une grande surface spécifique favorable à la diffusion de substances réactives. À partir des isothermes d'adsorption et de désorption de N 2 (Fig. 3, à droite), on peut voir qu'il y a une forte augmentation de l'adsorption dans la région des basses pressions partielles (P/P 0 < 0,1), attribuée au remplissage. de micropores, indiquant qu'il y a une certaine quantité de structure microporeuse dans le matériau, et il y a une boucle d'hystérésis dans la plage de P/P 0 d'environ 0,40 à 0,99, ce qui suggère qu'il y a une abondance de structure mésoporeuse dans ce ZIF tamis moléculaire. Le graphique de distribution de la taille des pores SF (Fig. 4, à gauche) montre que la taille des pores la plus disponible de cet échantillon est de 0, 56 nm. Le volume total des pores de ce tamis moléculaire ZIF est de 0,97 cm 3 /g, et le volume microporeux est de 0,64 cm 3 /g, avec 66 % de micropores, et la structure microporeuse peut augmenter considérablement la surface spécifique de l'échantillon, mais le le tamis moléculaire limitera l'activité catalytique dans certaines conditions en raison de la taille plus petite des pores. Cependant, dans certaines conditions, la taille plus petite des pores limitera la vitesse de diffusion de la réaction catalytique, ce qui limite les performances du catalyseur à tamis moléculaire. Cependant, la structure mésoporeuse peut évidemment compenser ce défaut de la structure microporeuse, donc la structure de la combinaison microporeuse-mésoporeuse peut résoudre efficacement le problème de la limitation de la capacité de transfert de masse du tamis moléculaire traditionnel à pore unique. Fig. 1 Résultats des tests de surface spécifique (à gauche) et isothermes de sorption et de désorption de N 2 (à droite) pour les tamis moléculaires ZIF Fig. 2 Distribution de la taille des pores SF (à gauche) et distribution de la taille des pores NLDFT (à droite) du tamis moléculaire ZIF
Voir plusLa caractérisation de la morphologie des feuilles de cuivre par microscopie électronique à balayage peut aider les chercheurs et les développeurs à optimiser et à améliorer le processus de préparation et les performances des feuilles de cuivre afin de mieux répondre aux exigences de qualité existantes et futures des batteries lithium-ion hautes performances. Large gamme d'applications sur le cuivre Le cuivre métallique est largement utilisé dans les batteries lithium-ion et les cartes de circuits imprimés en raison de sa ductilité, de sa conductivité élevée, de sa facilité de traitement et de son prix bas. Selon le processus de production, la feuille de cuivre peut être classée en feuille de cuivre calandrée et feuille de cuivre électrolytique. La feuille de cuivre calandrée est constituée de blocs de cuivre laminés à plusieurs reprises, avec une pureté élevée, une faible rugosité et des propriétés mécaniques élevées, mais à un coût plus élevé. La feuille de cuivre électrolytique, en revanche, présente l’avantage d’être peu coûteuse et constitue actuellement le produit de feuille de cuivre le plus répandu sur le marché. Le processus spécifique de la feuille de cuivre électrolytique est (1) la dissolution du cuivre : dissoudre le cuivre brut pour former un électrolyte acide sulfurique-sulfate de cuivre et éliminer les impuretés par filtration multiple pour améliorer la pureté de l'électrolyte. (2) Préparation de la feuille brute : des rouleaux de titane pur généralement polis comme cathode, par électrodéposition d'ions de cuivre dans l'électrolyte, sont réduits à la surface de la cathode pour former une certaine épaisseur de couche de cuivre. (3) Traitement de surface : la feuille brute est décollée du rouleau cathodique, puis après post-traitement, la feuille de cuivre électrolytique finie peut être obtenue. Figure 1 Processus de production de feuilles de cuivre électrolytiques Cuivre métallique dans les batteries lithium-ion Les batteries lithium-ion sont principalement composées de matériaux actifs (matériau de cathode, matériau d'anode), de diaphragme, d'électrolyte et de collecteur conducteur. Le potentiel positif est élevé, le cuivre est facile à oxyder à des potentiels plus élevés, c'est pourquoi la feuille de cuivre est souvent utilisée comme collecteur d'anode des batteries lithium-ion. La résistance à la traction, l'allongement et d'autres propriétés de la feuille de cuivre affectent directement les performances des batteries lithium-ion. À l'heure actuelle, les batteries lithium-ion sont principalement développées dans le sens de la tendance « légère et fine », de sorte que les performances de la feuille de cuivre électrolytique mettent également en avant des exigences plus élevées telles qu'une résistance ultra-mince, élevée à la traction et un allongement élevé. Comment améliorer efficacement le processus électrolytique de la feuille de cuivre afin d’améliorer les propriétés mécaniques de la feuille de cuivre est la principale directi...
Voir plus