Les microsphères expansibles, petites sphères thermoplastiques encapsulées avec du gaz, sont constituées d'une coque en polymère thermoplastique et d'un gaz alcane liquide encapsulé. Lorsque les microsphères sont chauffées, la coque se ramollit et la pression de l'air interne augmente considérablement, provoquant une expansion spectaculaire des microsphères jusqu'à 60 fois leur volume d'origine, leur donnant la double fonction de charge légère et d'agent gonflant. En tant que charge légère, les microsphères expansibles peuvent réduire considérablement le poids des produits à très faible densité, et leur mesure de densité est très importante. Figure 1 Microsphères expansibles Principe du testeur de densité réelle série EASY-G 1330 Le testeur de densité réelle série EASY-G 1330 est basé sur le principe d'Archimède, utilisant un gaz de petit diamètre moléculaire comme sonde et l'équation d'état du gaz idéal PV = nRT pour calculer le volume de gaz déchargé du matériau dans certaines conditions de température et de pression. afin de déterminer la véritable densité du matériau. Le gaz de petit diamètre moléculaire peut être utilisé comme azote ou hélium, car l'hélium a le plus petit diamètre moléculaire et est un gaz inerte stable, qui ne réagit pas facilement avec l'échantillon par adsorption, c'est pourquoi l'hélium est généralement recommandé comme gaz de remplacement. Avantages du testeur de densité réelle série EASY-G 1330 Le testeur de densité réelle série EASY-G 1330 utilise du gaz comme sonde, ce qui n'endommagera pas l'échantillon de test, et l'échantillon peut être recyclé directement ; et dans le processus de test, le gaz ne réagira pas avec l'échantillon et ne provoquera pas de corrosion de l'équipement, de sorte que le facteur de sécurité du processus d'utilisation est élevé ; en outre, le gaz présente les caractéristiques d'une diffusion facile, d'une bonne perméabilité et d'une bonne stabilité, ce qui peut pénétrer plus rapidement dans les pores internes du matériau et rendre les résultats des tests plus précis. Procédure expérimentale ①Échauffement : ouvrez la vanne principale du cylindre et la table de réduction de pression, allumez l'interrupteur d'alimentation au moins une demi-heure à l'avance, pression de sortie de la table de réduction de pression du gaz : 0,4 ± 0,02 MPa ; ②Étalonnage de l'instrument : avant le début de l'expérience, calibrez l'instrument avec des billes d'acier standard pour garantir que le volume de billes d'acier testées dans tous les pipelines de l'équipement se situe dans la valeur standard avant de commencer l'expérience ; ③Détermination du volume du tube d'échantillon : installez le tube d'échantillon vide dans la cavité de l'instrument et serrez-le, configurez le logiciel, déterminez le volume du tube d'échantillon et enregistrez le volume du tube d'échantillon correspondant à la fin de l'expérience ; ...
Voir plusRécemment, les prix mondiaux du pétrole ont fortement augmenté et le secteur des énergies renouvelables, représenté par la production d’énergie solaire photovoltaïque (PV), a fait l’objet d’une large attention. En tant que composant essentiel de la production d'énergie photovoltaïque, les perspectives de développement et les valeurs marchandes des cellules solaires photovoltaïques sont au centre de l'attention. Sur le marché mondial des batteries, les cellules photovoltaïques représentent environ 27 %[1]. Le microscope électronique à balayage joue un rôle important dans l'amélioration du processus de production et de la recherche associée sur les cellules photovoltaïques. La cellule photovoltaïque est une fine feuille de semi-conducteur optoélectronique qui convertit l'énergie solaire directement en énergie électrique. Les cellules photovoltaïques actuellement produites dans le commerce sont principalement des cellules au silicium, qui sont divisées en cellules au silicium monocristallin, cellules au silicium polycristallin et cellules au silicium amorphe. Méthodes de texturation de surface pour l’amélioration de l’efficacité des cellules solaires Dans le processus de production actuel des cellules photovoltaïques, afin d'améliorer encore l'efficacité de la conversion d'énergie, une structure texturée spéciale est généralement réalisée sur la surface de la cellule, et ces cellules sont appelées cellules « non réfléchissantes ». Plus précisément, la structure texturée à la surface de ces cellules solaires améliore l'absorption de la lumière en augmentant le nombre de réflexions de la lumière irradiée sur la surface de la plaquette de silicium, ce qui non seulement réduit la réflectivité de la surface, mais crée également des pièges à lumière à l'intérieur. la cellule, augmentant ainsi considérablement l'efficacité de conversion des cellules solaires, ce qui est important pour améliorer l'efficacité et réduire le coût des cellules photovoltaïques au silicium existantes[2]. Comparaison de la surface plane et de la surface de la structure pyramidale Par rapport à une surface plane, une plaquette de silicium à structure pyramidale a une probabilité plus élevée que la lumière réfléchie par la lumière incidente agisse à nouveau sur la surface de la plaquette plutôt que de se refléter directement dans l'air, augmentant ainsi la quantité de lumière diffusée. et réfléchi sur la surface de la structure, permettant à plus de photons d'être absorbés et fournissant plus de paires électron-trou. Chemins de lumière pour différents angles incidents de lumière frappant la structure pyramidale Les méthodes couramment utilisées pour la texturation de surfaces comprennent la gravure chimique, la gravure ionique réactive, la photolithographie et le rainurage mécanique. Parmi elles, la méthode de gravure chimique est largement utilisée dans l'industrie en raison de son faible coût, de sa producti...
Voir plusLa poudre médicamenteuse constitue le corps principal de la plupart des formulations médicamenteuses, et son efficacité dépend non seulement du type de médicament, mais également dans une large mesure des propriétés de la poudre qui compose l'agent, notamment la taille des particules, la forme, les propriétés de surface et d'autres types de paramètres. La surface spécifique et la structure de la taille des pores des poudres médicamenteuses sont liées aux propriétés des particules de poudre telles que la taille des particules, l'hygroscopique, la solubilité, la dissolution et le compactage, qui jouent un rôle important dans les capacités de purification, de traitement, de mélange, de production et de conditionnement des médicaments. De plus, la validité, la vitesse de dissolution, la biodisponibilité et l’efficacité des médicaments dépendent également de la surface spécifique du matériau. D'une manière générale, plus la surface spécifique des poudres pharmaceutiques est grande dans une certaine plage, plus la dissolution et le taux de dissolution seront accélérés en conséquence, ce qui garantit la distribution uniforme du contenu du médicament ; cependant, une surface spécifique trop grande entraînera l’adsorption d’une plus grande quantité d’eau, ce qui ne favorise pas la préservation et la stabilité de l’efficacité du médicament. Par conséquent, des tests précis, rapides et efficaces de la surface spécifique des poudres pharmaceutiques ont toujours été un élément indispensable et essentiel de la recherche pharmaceutique. Étude de cas de l'application CIQTEK dans les poudres pharmaceutiques Nous combinons les cas de caractérisation réels de différents matériaux en poudre de médicaments pour montrer clairement les méthodes et l'applicabilité de cette technologie pour caractériser les propriétés physiques de différentes surfaces de médicaments, puis effectuons une analyse de base sur la date d'expiration, le taux de dissolution et l'efficacité des médicaments, et aider l’industrie pharmaceutique à se développer de haute qualité. L'analyseur de surface spécifique et de taille de pores de la série V-Sorb X800 est un instrument à haut débit, rapide et économique, qui peut réaliser des tests rapides de la surface spécifique des produits finis entrants et sortants, une analyse de la distribution de la taille des pores, un contrôle qualité, un ajustement des paramètres de processus. , et prédiction des performances des médicaments, etc. Analyseur automatique de surface et de porosimétrie BET Série CIQTEK EASY-V SEM CIQTEK 1. Microscope électronique à balayage et analyseur spécifique de surface et de taille de pores en dispersion de montmorillonite La montmorillonite est obtenue à partir de la purification et du traitement de la bentonite, qui présente des avantages uniques en pharmacologie en raison de sa structure cristalline spéciale avec une bonne capacité d'adsorption, une bonn...
Voir plusLes matériaux métalliques sont des matériaux possédant des propriétés telles que le lustre, la ductilité, la conductivité facile et le transfert de chaleur. Il est généralement divisé en deux types : les métaux ferreux et les métaux non ferreux. Les métaux ferreux comprennent le fer, le chrome, le manganèse, etc. Jusqu'à présent, le fer et l'acier dominent encore dans la composition des matières premières industrielles. De nombreuses entreprises sidérurgiques et instituts de recherche utilisent les avantages uniques du SEM pour résoudre les problèmes rencontrés lors de la production et pour aider à la recherche et au développement de nouveaux produits. La microscopie électronique à balayage avec les accessoires correspondants est devenue un outil favorable pour l'industrie sidérurgique et métallurgique pour mener des recherches et identifier les problèmes dans le processus de production. Avec l'augmentation de la résolution et de l'automatisation du SEM, l'application du SEM dans l'analyse et la caractérisation des matériaux devient de plus en plus répandue. L’analyse des échecs est une nouvelle discipline qui a été popularisée ces dernières années par les entreprises militaires auprès des chercheurs et des entreprises. La défaillance des pièces métalliques peut entraîner une dégradation des performances de la pièce dans les cas mineurs et des accidents de sécurité des personnes dans les cas majeurs. Localiser les causes d’échec grâce à l’analyse des échecs et proposer des mesures d’amélioration efficaces sont des étapes essentielles pour garantir la sécurité du fonctionnement du projet. Par conséquent, tirer pleinement parti des avantages de la microscopie électronique à balayage apportera une grande contribution au progrès de l’industrie des matériaux métalliques. 01 Observation au microscope électronique de la rupture par traction de pièces métalliques La fracture se produit toujours dans la partie la plus faible du tissu métallique et enregistre de nombreuses informations précieuses sur l'ensemble du processus de fracture, de sorte que l'observation et l'étude de la fracture ont toujours été soulignées dans l'étude de la fracture. L'analyse morphologique de la fracture permet d'étudier certains problèmes fondamentaux qui conduisent à la fracture du matériau, tels que la cause de la fracture, la nature de la fracture et le mode de fracture. Si nous voulons étudier en profondeur le mécanisme de fracture du matériau, nous devons généralement analyser la composition de la micro-zone à la surface de la fracture, et l'analyse de la fracture est désormais devenue un outil important pour l'analyse des défaillances des composants métalliques. Fig. 1 Morphologie de la fracture par traction au microscope électronique à balayage CIQTEK SEM3100 Selon la nature de la fracture, la fracture peut être largement classée en fracture fragile et fracture plastique. La surface de fracture de...
Voir plusPouvez-vous imaginer un disque dur d’ordinateur portable de la taille d’un grain de riz ? Skyrmion, une mystérieuse structure de quasiparticules dans le champ magnétique, pourrait faire de cette idée apparemment impensable une réalité, avec plus d'espace de stockage et des taux de transfert de données plus rapides pour ce « grain de riz ». Alors, comment observer cette étrange structure de particules ? Le CIQTEK Quantum Diamond Atomic Le microscope à force (QDAFM), basé sur le centre de vacance d'azote (NV) en imagerie à balayage diamant et AFM, peut vous donner la réponse. Qu'est-ce que Skyrmion Avec le développement rapide des circuits intégrés à grande échelle, le processus de puce à l'échelle nanométrique, l'effet quantique est progressivement mis en évidence et la « loi de Moore » a rencontré des limites physiques. Dans le même temps, avec une telle densité de composants électroniques intégrés sur la puce, le problème de la dissipation thermique est devenu un défi de taille. Les gens ont un besoin urgent d'une nouvelle technologie pour surmonter les goulots d'étranglement et promouvoir le développement durable des circuits intégrés. Les dispositifs spintroniques peuvent atteindre une plus grande efficacité dans le stockage, le transfert et le traitement des informations en exploitant les propriétés de spin des électrons, ce qui constitue un moyen important de résoudre le dilemme ci-dessus. Ces dernières années, les propriétés topologiques des structures magnétiques et leurs applications associées devraient devenir les supports d'informations des dispositifs spintroniques de nouvelle génération, qui constituent l'un des points chauds de la recherche actuelle dans ce domaine. Le skyrmion (ci-après appelé skyrmion magnétique) est une structure de spin topologiquement protégée avec des propriétés de quasi-particules, et en tant que type particulier de paroi de domaine magnétique, sa structure est une distribution de magnétisation avec des vortex. Semblable au mur du domaine magnétique, il existe également un retournement de moment magnétique dans le skyrmion, mais contrairement au mur de domaine, le skyrmion est une structure vortex, et son retournement de moment magnétique se fait du centre vers l'extérieur, et les plus courants sont de type Bloch. skyrmions et skyrmions de type Neel. Figure 1 : Diagramme schématique de la structure du skyrmion. (a) Skyrmions de type Neel (b) Skyrmions de type Bloch Le skyrmion est un support d'informations naturel doté de propriétés supérieures telles qu'une manipulation facile, une stabilité facile, une petite taille et une vitesse de conduite rapide. Par conséquent, les appareils électroniques basés sur les skyrmions devraient répondre aux exigences de performances des futurs appareils en termes de capacité non volatile, élevée, de vitesse élevée et de faible consommation d'énergie. Quelles sont les applications des Skyrmions Mémoire d...
Voir plusLa méthode de résonance paramagnétique électronique (EPR) par piégeage de spin est une méthode qui combine la technique de piégeage de spin avec la technique EPR pour détecter les radicaux libres à courte durée de vie. Pourquoi utiliser la technologie Spin Trapping ? Les radicaux libres sont des atomes ou des groupes comportant des électrons non appariés formés par la liaison covalente de molécules composées dans des conditions externes telles que la chaleur et la lumière. On les trouve largement dans la nature. Avec le développement de disciplines interdisciplinaires telles que la biologie, la chimie et la médecine, les scientifiques ont découvert que de nombreuses maladies sont associées aux radicaux libres. Cependant, en raison de leur nature active et réactive, les radicaux libres générés dans les réactions sont souvent instables à température ambiante et difficiles à détecter directement à l’aide des méthodes conventionnelles de spectroscopie RPE. Bien que les radicaux libres de courte durée puissent être étudiés par des techniques de RPE résolues dans le temps ou des techniques de congélation rapide à basse température, leurs concentrations plus faibles pour la plupart des radicaux libres dans les systèmes biologiques limitent la mise en œuvre des techniques ci-dessus. La technique du spin trapping, quant à elle, permet la détection de radicaux libres à courte durée de vie à température ambiante par une méthode indirecte. Fondamentaux de la technologie du piégeage de spin Dans une expérience de piégeage de spin, un piège à spin (une substance antimagnétique insaturée capable de piéger les radicaux libres) est ajouté au système. Après avoir ajouté le piège à spin, les radicaux instables et le piège formeront des adduits de spin plus stables ou à durée de vie plus longue. En détectant les spectres RPE des adduits de spin et en traitant et analysant les données, nous pouvons inverser le type de radicaux et ainsi détecter indirectement les radicaux libres instables. Figure 1 Principe de la technique de capture de spin (DMPO comme exemple) Sélection de Spin Trap Les pièges à spin les plus largement utilisés sont principalement des composés nitrone ou nitroso, les pièges à spin typiques sont le MNP (dimère de 2-méthyl-2-nitrosopropane), le PBN (N-tert-butyl α-phényl nitrone), le DMPO (5,5-diméthyl- 1-pyrroline-N-oxyde), et les structures sont illustrées à la figure 2. Et un excellent piège à spin doit satisfaire trois conditions. 1. Les adduits de spin formés par des pièges à spin avec des radicaux libres instables doivent être de nature stable et avoir une longue durée de vie. 2. Les spectres RPE des adduits de spin formés par les pièges à spin et divers radicaux instables doivent être facilement distinguables et identifiables. 3. Le piège à spin réagit facilement spécifiquement avec une variété de radicaux libres, et il n'y a pas de ré...
Voir plusLa technique de résonance paramagnétique électronique (EPR ou ESR) est la seule méthode disponible pour détecter directement les électrons non appariés dans les échantillons. Parmi elles, la méthode quantitative EPR (ESR) peut fournir le nombre de spins électroniques non appariés dans un échantillon, ce qui est essentiel pour étudier la cinétique de la réaction, expliquant le mécanisme de réaction et les applications commerciales. Par conséquent, l’obtention des nombres de spins électroniques non appariés d’échantillons par des techniques de résonance paramagnétique électronique a été un sujet de recherche brûlant. Deux principales méthodes quantitatives de résonance paramagnétique électronique sont disponibles : l'EPR quantitative relative (ESR) et l'EPR quantitative absolue (ESR). Méthode EPR quantitative relative (ESR) La méthode EPR quantitative relative est réalisée en comparant la zone intégrée du spectre d'absorption EPR d'un échantillon inconnu avec la zone intégrée du spectre d'absorption EPR d'un échantillon standard. Par conséquent, dans la méthode EPR quantitative relative, un échantillon standard avec un nombre connu de spins doit être introduit. La taille de la zone intégrée du spectre d'absorption RPE n'est pas seulement liée au nombre de spins électroniques non appariés dans l'échantillon, mais également aux réglages des paramètres expérimentaux, à la constante diélectrique de l'échantillon, à la taille et à la forme de l'échantillon. , et la position de l'échantillon dans la cavité résonante. Par conséquent, pour obtenir des résultats quantitatifs plus précis dans la méthode EPR quantitative relative, l'échantillon standard et l'échantillon inconnu doivent être de nature similaire, de forme et de taille similaires, et dans la même position dans la cavité résonante. Sources d’erreurs EPR quantitatives Méthode EPR quantitative absolue (ESR) La méthode EPR quantitative absolue signifie que le nombre de spins électroniques non appariés dans un échantillon peut être obtenu directement par test EPR sans utiliser d'échantillon standard. Dans les expériences RPE quantitatives absolues, pour obtenir directement le nombre de spins électroniques non appariés dans un échantillon, la valeur de l'aire intégrale quadratique du spectre RPE (généralement le spectre différentiel de premier ordre) de l'échantillon à tester, les paramètres expérimentaux, le volume de l'échantillon, la fonction de distribution de la cavité de résonance et le facteur de correction sont nécessaires. Le nombre absolu de spins électroniques non appariés dans l'échantillon peut être directement obtenu en obtenant d'abord le spectre EPR de l'échantillon via le test EPR, puis en traitant le spectre différentiel de premier ordre EPR pour obtenir la deuxième valeur de surface intégrée, puis en combinant le paramètres expérimentaux, volume de l'échantillon, fonction de distribution de la cavité résonante et fact...
Voir plusBasés sur des propriétés quantiques, les capteurs de spin électronique ont une sensibilité élevée et peuvent être largement utilisés pour sonder diverses propriétés physicochimiques, telles que le champ électrique, le champ magnétique, la dynamique moléculaire ou protéique et les particules nucléaires ou autres. Ces avantages uniques et ces scénarios d’application potentiels font des capteurs basés sur le spin une direction de recherche actuellement en vogue. Sc 3 C 2 @C 80 possède un spin électronique très stable protégé par une cage en carbone, qui convient à la détection par adsorption de gaz dans des matériaux poreux. Le Py-COF est un matériau de structure organique poreux récemment apparu doté de propriétés d'adsorption uniques, qui a été préparé à l'aide d'un élément de base auto-condensant avec un groupe formyle et un groupe amino. préparé avec une taille de pores théorique de 1,38 nm. Ainsi, une unité métallofullerène Sc 3 C 2 @C 80 (taille d'environ 0,8 nm) peut pénétrer dans l'un des nanopores du Py-COF. Un capteur nanospin basé sur du fullerène métallique a été développé par Taishan Wang, chercheur à l'Institut de chimie de l'Académie chinoise des sciences, pour détecter l'adsorption de gaz dans un cadre organique poreux. Le fullerène métallique paramagnétique, Sc 3 C 2 @C 80 , a été intégré dans les nanopores d'une structure organique covalente à base de pyrène (Py-COF). Les N 2、 CO 、 CH 4、 CO 2、 C 3 H 6 et C 3 H 8 dans le Py-COF intégré à la sonde de spin Sc 3 C 2 @C 80 ont été enregistrés à l'aide de la technique EPR (CIQTEK EPR200-Plus ).Il a été montré que les signaux EPR du Sc 3 C 2 @C 80 intégré étaient régulièrement corrélés aux propriétés d'adsorption de gaz du Py-COF. Les résultats de l'étude ont été publiés dans Nature Communications sous le titre « Capteur de nano-spin intégré pour le sondage in situ de l'adsorption de gaz à l'intérieur de cadres organiques poreux ». Sonder les propriétés d'adsorption de gaz du Py-COF à l'aide du spin moléculaire de Sc 3 C 2 @C 8 Dans l'étude, les auteurs ont utilisé un métallofullerène doté de propriétés paramagnétiques, Sc 3 C 2 @C 80 (taille d'environ 0,8 nm), comme sonde de spin intégrée dans un nanopore de COF à base de pyrène (Py-COF) pour détecter l'adsorption de gaz. au sein de Py-COF. Ensuite, les propriétés d'adsorption du Py-COF pour les gaz N 2、 CO 、 CH 4、 CO 2、 C 3 H 6 et C 3 H 8 ont été étudiées en enregistrant les signaux EPR Sc 3 C 2 @C 80 intégrés. Il est montré que les signaux EPR de Sc 3 C 2 @C 80 suivent régulièrement les propriétés d'adsorption de gaz de Py-COF. Et contrairement aux mesures conventionnelles d’isotherme d’adsorption, ce capteur nanospin implantable peut détecter l’adsorption et la désorption de gaz par une surveillance in situ en temps réel. Le capteur nanospin proposé a également été utilisé pour sonder les propriétés d’adsorption de gaz de la ...
Voir plus
No. 1969, Kongquetai Road, High-tech Zone, Hefei, Anhui, China
+8615156059133
+8613083191369
info@ciqtek.com
Plan du site | XML | Blog | politique de confidentialité | Réseau IPv6 pris en charge
